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Abstract

Language modeling is a difficult problem for languages with
rich morphology. In this paper we investigate the use of
morphology-based language models at different stages in a
speech recognition system for conversational Arabic. Class-
based and single-stream factored language models using mor-
phological word representations are applied within an N-best
list rescoring framework. In addition, we explore the use of
factored language models in first-pass recognition, which is fa-
cilitated by two novel procedures: the data-driven optimization
of a multi-stream language model structure, and the conversion
of a factored language model to a standard word-based model.
We evaluate these techniques on a large-vocabulary recognition
task and demonstrate that they lead to perplexity and word error
rate reductions.

1. Introduction
A standard statistical language model (LM) computes the prob-
ability of a word sequenceW = w1; w2; :::;wT as a product of
the conditional probabilities of each wordwi given its history,
which is typically approximated by the one or two most recent
words. Even with this limitation, the estimation of LM prob-
abilities is challenging since many word contexts are observed
infrequently or not at all. This is particularly problematic for
morphologically rich languages, e.g. Turkish, Russian, orAra-
bic. Such languages have a high vocabulary growth rate, which
results in high language model perplexity and a large number
of out-of-vocabulary (OOV) words (see e.g. [1, 2, 3, 4, 5]). Re-
cently,Factored Language Models (FLMs)[5, 6] have been de-
veloped to address this problem. FLMs decompose words into a
number of features and use the resulting representation in agen-
eralized backoff scheme that improves the robustness of prob-
ability estimates for rarely observed word n-grams. A straight-
forward way to use FLMs and other morphology-based LMs in
automatic speech recognition (ASR) is by rescoring N-best lists
and combining scores from different models for final hypothesis
selection. Here, we present results using this technique aswell
as two extensions to this approach: (a) the automatic optimiza-
tion of FLM design parameters using a data-driven procedure,
and (b) the use of FLMs in first-pass recognition rather than
rescoring.

2. Factored Language Models
FLMs decompose each wordw into a set ofk features (orfac-
tors), i.e. w � f1:K. Factors represent morphological, syntac-
tic, or semantic word information and can be e.g. stems, POS
tags, etc. in addition to the words themselves. Probabilistic LMs

are then constructed over (sub)sets of factors. Using a trigram
approximation, this can be expressed as:p(f1:K1 ; f1:K2 ; :::; f1:KT ) � TYt=3 p(f1:Kt jf1:Kt�1 ; f1:Kt�2 ) (1)

Each word is dependent not only on a single stream of tempo-
rally preceding word variables, but also on additional parallel
streams of features. Such a representation can be used to back
off to factors when the word n-gram has not been observed in
the training data, thus improving probability estimates. For in-
stance, a word trigram may not have any counts in the training
set, but its corresponding factor combinations (e.g. stemsand
other morphological tags) may have been observed since they
also occur in other words. This is achieved via a newgeneral-
ized parallel backofftechnique. In standard Katz-style backoff,
the maximum-likelihood estimate of an n-gram with too few
observations in the training data is replaced with a probability
derived from the lower-order (n�1)-gram and a backoff weight
as follows:pBO(wtjwt�1; wt�2) (2)= � dcpML(wtjwt�1; wt�2) if c > �3�(wt�1; wt�2)pBO(wtjwt�1)otherwise

wherec is the count of(wt; wt�1; wt�2), pML denotes the
maximum-likelihood estimate,dc is a discounting factor and�(wt�1; wt�2) is a normalization factor. During standard back-
off, the most distant conditioning variable (in this casewt�2)
is dropped first, followed by the second most distant variable
etc., until the unigram is reached. This can be visualized asa
backoffpath (Figure 1(a)). If additional conditioning variables
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Figure 1: Standard backoff path for a 4-gram language model
over words (left) and backoff graph for 4-gram over factors
(right).



are used which do not form a temporal sequence, it is not im-
mediately obvious in which order they should be dropped. In
this case, several backoff paths are possible, which can be sum-
marized in a backoffgraph (Figure 1(b)). Paths in this graph
can be chosen in advance based on linguistic knowledge, or
at run-time based on statistical criteria such as counts in the
training set. It is also possible to choose multiple paths and
combine their probability estimates. The use of multiple con-
ditioning factors is similar to the procedure described in [7] but
is more general in that it allows arbitrary backoff paths instead
of imposing ana priori ordering of more specific to more gen-
eral probability distributions. Moreover, it provides different
combination methods for probability estimates obtained from
different paths. This is achieved by replacing the backed-off
probability pBO in Equation 2 by a general functiong, which
can beany non-negative functionapplied to the counts of the
lower-order n-gram. Several differentg functions can be cho-
sen, e.g. the mean, weighted mean, product, minimum or max-
imum of the smoothed probability distributions over all subsets
of conditioning factors [5]. In addition to different choices forg, different discounting parameters can be selected at different
levels in the backoff graph. For instance, at the topmost node,
Kneser-Ney discounting might be used whereas at a lower node
Good-Turing might be applied. FLMs have been implemented
as an add-on to the widely-used SRILM toolkit. Further de-
tails can be found in [5]. One difficulty in training FLMs is
the choice of the best combination of design choices, in par-
ticular the conditioning factors, backoff path(s) and smoothing
options. Since the space of different combinations is too large
to be searched exhaustively, we have developed an automatic
procedure to optimize FLMs, further described in Section 4.2.

3. Data and Baseline System
The experiments reported here were run on the LDC CallHome
corpus of Egyptian Colloquial Arabic (ECA). The training set
consists of the training, hub5new and eval96 subsets and con-
tains 120 conversations (˜180K words) in total. The develop-
ment set (dev) has 32K words and the two test sets have 18K
(eval97) and 11K (eval03) words, respectively. The recognizer
was trained on the ’romanized’ transcriptions of the data. 9%
of all word tokens are disfluencies and 1.6% are foreign words.
The recognition dictionary consisted of 18K words.

For recognition we use the SRI DECIPHERTM system.
The front-end consists of 52 mel-frequency cepstral coefficients
(13 base coefficients + 1st + 2nd +3rd differences), reduced
with HLDA to 39 dimensions. Mean and variance as well as
vocal tract length normalization are performed for speakerclus-
ters (the waves for each conversation side were clustered into
an average of 3 speaker clusters). Continuous-density, genonic
hidden Markov models [8] with 128 Gaussians per genone are
used. The system contains approximately 220 genones. The
decoder uses a multipass approach: In the first pass (Stage
1), N-best hypotheses are generated using phoneloop-adapted
non-crossword models and a bigram LM. Maximum word pos-
terior hypotheses are obtained using N-best ROVER, which
are then used to train speaker-adaptive training (SAT) and
maximum-likelihood linear regression (MLLR) transforms for
each speaker. The adapted models are used in the second pass
to produce bigram lattices. The lattices are rescored with atri-
gram LM and are used as recognition networks for the follow-
ing passes. Two more passes are performed, one using adapted
non-crossword maximum-mutual-information (MMI) trained
models, and one using adapted crossword maximum-likelihood

trained models. Thus we obtain two sets of N-best hypotheses,
each of which is rescored with additional morphology-based
LMs as described below (Stages 2a and 2b). The final hypothe-
ses are generated by 2-way N-best ROVER (Stage 3).

4. ASR Using Morphology-based LMs
Morphological information for language modeling is obtained
by extracting the stem and the morphological class for each
word from the CallHome ECA lexicon, and by using a morpho-
logical analyzer [9] to further decompose the stem into a root
(typically a sequence of three consonants) and a pattern (a se-
quence of consonant and vowel slots) (cf. [5]). Root and pattern
decomposition is noisy since the analyzer was developed fora
different dialect of Arabic.

4.1. Fixed FLM Topologies

In the system submitted for the RT-03 benchmark evaluations
[10], we used morphology-based language models to rescore
the N-best lists prior to applying ROVER. The factors consid-
ered for LM training were: root, stem, and morphological class.
For each of the two sets of N-best lists, a different combina-
tion of rescoring LMs was employed. The first used three class-
based LMs, where the classes were defined based on each of the
above-mentioned factors. The second used three FLMs, each
with a fixed backoff path allowing backoff only to a single fac-
tor. This led to word error rate reductions on the eval03 set
of 0.8% and 1.5% (absolute), respectively. In the final 2-way
ROVER combination pass we obtained improvements of 1.3%
and 0.8% on the dev and eval03 test sets, respectively (see “N-
best” columns in Table 3).

4.2. Automatic FLM Parameter Search

Since the space of possible FLM structures is very large we
explored the use of Genetic Algorithms (GAs) to optimize the
choice of conditioning factors, backoff paths, and smoothing
options. GAs [11] encode problem solutions as strings (genes),
and evolve successive populations of solutions through theuse
of genetic operators (e.g. selection, cross-over, mutation). The
probability of each gene’s survival is dependent on its fitness
function, which represents the desired optimization criterion.
In this case, each gene represents an FLM with a specific set
of parameters, i.e. the initial conditioning factors, the backoff
graph, and the smoothing options. The fitness function is the
FLM’s perplexity on the development set.

The main problem in applying GAs to our current task
is to find a good encoding of the problem. The ini-
tial set of conditioning factorsF is encoded as a binary
string. For instance, a trigram for a word representation with
three factors (A,B,C) has six potential conditioning variables:fA�1; B�1; C�1; A�2; B�2; C�2g which can be represented
as a 6-bit binary string, with a bit set to 1 indicating presence
and 0 indicating absence of a factor inF . The string 10011
would correspond toF = fA�1; B�2; C�2g. The backoff
graph is encoded by means of graph grammar rules (similar
to [12]), since a direct approach encoding every edge as a bit
would result in overly long strings and inefficient GA search.
(There are up tom! backoff paths for a FLM withm initial fac-
tors). The grammar rules capture the regularity that a node withm factors can only back off to children nodes withm� 1 fac-
tors. For instance, form = 3, the choices for proceeding to the
next-lower level in the backoff graph can be described by the
following grammar rules:



RULE 1: fx1; x2; x3g ! fx1; x2g
RULE 2: fx1; x2; x3g ! fx1; x3g
RULE 3: fx1; x2; x3g ! fx2; x3g
Herexi corresponds to the factor at theith position in the par-
ent node. Rule 1 indicates a backoff that drops the third fac-
tor, Rule 2 drops the second factor, etc. The choice of rules
used to generate the backoff graph is encoded in a binary string,
with 1 indicating the use and 0 indicating the non-use of a rule.
The backoff graph grows according to the rules specified by the
gene, as shown schematically in Figure 2. The smoothing op-
tions are encoded as tuples of integers, each specifying thedis-
counting method and backoff threshold at a node in the graph.
Finally, the GA operators are applied to concatenations of all
three substrings describing the set of factors, backoff graph,
and smoothing options, such that all parameters are optimized
jointly. Table 1 lists the perplexities of the word-based n-grams,
of the best FLMs obtained by a manual parameter search, ran-
dom search, and the GA-based search. We observe that the GA
procedure leads to 3% (bigram) and 6% (trigram) relative re-
ductions in perplexity and performs better than either manual
or random search. Models were optimized to reduce the per-
plexity on the known words, ignoring the probability given to
OOV words. This constraint prevents the GA from minimizing
perplexity by choosing models which assign high probability
to OOV words rather than to words present in the recognition
dictionary. The best-performing FLMs use all morphological
factors (stems, morph classes, roots and patterns in addition to
words) and parallel backoff with different smoothing options at
different nodes in the backoff graph.

1. {X1 X2 X3} −> {X1 X2}
2. {X1 X2 X3} −> {X1 X3}
3. {X1 X2 X3} −> {X2 X3}
4.      {X1 X2}  −> {X1}
5.      {X1 X2}  −> {X2}
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Figure 2: Generation of Backoff Graph from production rules
selected by the gene 10110.

Model word FLM manual FLM rand FLM GA

bigram 229.9 229.6 229.9 226.1
trigram 227.1 223.2 230.3 212.6

Table 1: Bigram and trigram perplexities on the CH dev set for
word-based LMs and for FLMs obtained by manual, random
(rand) and genetic search (GA).

Set dev eval97 eval03
n 2 3 2 3 2 3

I 230 227 227 222 132 123
II 223 213 222 209 136 89
III 250 227 249 225 145 141
IV 226 217 225 215 137 137

Table 2: Bigram and trigram perplexities obtained by: the word-
based baseline LM (I), the FLM (II), the baseline LM rescored
with the FLM without adding additional n-grams (III), and with
added n-grams (IV), on the different CH sets.

4.3. Converting FLMs to Word-based LMs

Since promising results were obtained by applying morphologi-
cal knowledge during rescoring, we expect to gain a further im-
provement when applying it at earlier recognition passes. Better
hypotheses at early passes can positively influence adaptation
and re-recognition results at later passes. However, the use of
FLMs in first-pass recognition is problematic because standard
word-based decoders cannot process the decomposed word rep-
resentations required by FLMs. For this reason we use a novel
feature of the SRILM toolkit that allows us to ’rescore’ a word-
based language model with an FLM. First, the entries in the
word-based LM are converted to a factored representation based
on a lexicon. They are then passed through the FLM trained
on the decomposed training text and are assigned new proba-
bilities from this FLM. After renormalization, the entriesare
converted back to words and written out as a new LM in stan-
dard ARPA format for use with a word-based decoder. When
applied to a development or test set, the rescored word LM ob-
tains a higher perplexity than the corresponding FLM. This is
because unseen word n-grams in the new text can be assigned
probabilities in the FLM by backing off to previously encoun-
tered factor combinations (e.g. morph class or stem n-grams);
however, if the corresponding word n-grams are not present in
the original word-based LM, they will not be present in the to
the new rescored LM. For this reason, additional word n-grams
need to be added prior to rescoring in order to derive the max-
imum benefit from the FLM. Adding all possible bigrams and
trigrams is clearly infeasible. We select bigrams which do not
exist in the original training data by searching over all possible
bigrams and retaining those for whichpFLM (w;h)(log(pFLM (wjh))� log(pword(wjh))) > �
whereh is the word history,pFLM is the probability obtained
by the original FLM andpword is the probability obtained by
the word LM (cf. [13]). The value of� was chosen such thatpword would be within 2% of that of the FLM. Since a com-
parable search over the entire trigram space is infeasible,we
only search over those trigrams for which both word bigrams
have already been added based on the above criterion. Table 2
compares the perplexities on the dev and eval sets obtained by
different language models.

The results show that the use of FLMs (line II) leads to per-
plexity reductions on all sets with the exception of the bigram
on the eval03 set. Since reductions are achieved on the eval97
set, it is unlikely that this is due to an overfitting to the devel-
opment data by the GA search procedure; rather, it seems to be
the case that the eval03 is very different in nature from the other
two sets. This is confirmed by the much lower perplexities and
typical word error rates (around 40%) obtained on this set. The



dev eval97 eval03
Stage baseline FLM Nbest FLM baseline FLM Nbest FLM baseline FLM Nbest FLM

rescoring all passes rescoring all passes rescoring all passes

(1) 57.3 56.2 61.7 61.0 46.7 46.3
(2a) 54.8 53.4 52.7 58.2 56.9 56.5 40.8 39.9 40.2
(2b) 54.3 53.0 52.5 58.8 57.9 57.4 41.0 39.5 40.1
(3) 53.9 52.6 52.1 57.6 56.6 56.1 40.2 39.4 39.6

Table 3: Word error rates (in %) obtained by the baseline system , the system using morphology-based LMs for N-best list rescoring,
and the system using morphology-based FLM in all recognition passes and the previous models for N-best rescoring, at different
recognition stages as described in Section 3.

differences between rows II and III/IV demonstrate the lossin
performance due to the rescoring procedure described above,
which prevents us from exploiting the benefits of FLMs to the
full extent. This is particularly obvious for the trigram applied
to the eval03 set. Since trigrams that are added in IV are depen-
dent on previously added bigrams, perplexity does not decrease
but increase in this case.

4.4. Recognition Experiments

In order to evaluate the total effect of the morphology-based
LMs in the multipass system, we replaced the standard word-
based LM used in the baseline with Model IV in Table 2.
Recognition results (Table 3) show that the use of morphology-
based LMs improves WER by 1.8% absolute on the dev set and
1.5% on the eval97 set. One third of that improvement (0.5%)
is due to the use of morphological knowledge throughout all the
recognition passes.

The last columns in Table 3 show the results on the eval03
set. Here, the application of morphological LMs in the rescor-
ing pass leads to improvements comparable to those on the dev
and eval97 sets; however, the use of the rescored LM from the
first-pass slightly hurts rather than helps the performance. This
is most likely due to the increase in perplexity of the rescored
model on this set, as explained above.

5. Discussion
We have shown that the use of morphology-based LMs at dif-
ferent stages in an LVCSR system for Arabic leads to word er-
ror rate reductions. One drawback of the current approach is
that the full potential of the FLM cannot be exploited directly
since factored word representations are not supported by current
decoders. Future work will focus on creating better interfaces
between the decoder and factored language models, and on ex-
tending the current method by adding out-of-vocabulary words
with probabilities assigned by morphological language models.
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